Cryptocurrency Consensus: How Blockchain Distributed ...

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

Cryptocurrency Staking As It Stands Today

Cryptocurrency Staking As It Stands Today
Everyone and his grandma know what cryptocurrency mining is. Well, they may not indeed know what it actually is, in technical terms, but they have definitely heard the phrase as it is hard to miss the news about mining sucking in energy like a black hole gobbles up matter. On the other hand, staking, its little bro, has mostly been hiding in the shadows until recently.
by StealthEX
Today, with DeFi making breaking news across the cryptoverse, staking has become a new buzzword in the blockchain space and beyond, along with the fresh entries to the crypto asset investor’s vocabulary such as “yield farming”, “rug pull”, “total value locked”, and similar arcane stuff. If you are not scared off yet, then read on. Though we can’t promise you won’t be.

Cryptocurrency staking, little brother of crypto mining

There are two conceptually different approaches to achieving consensus in a distributed network, which comes down to transaction validation in the case of a cryptocurrency blockchain. You are most certainly aware of cryptocurrency mining, which is used with cryptocurrencies based on the Proof-of-Work (PoW) consensus algorithm such as Bitcoin and Ether (so far). Here miners compete against each other with their computational resources for finding the next block on the blockchain and getting a reward.
Another approach, known as the Proof-of-Stake (PoS) consensus mechanism, is based not on the race among computational resources as is the case with PoW, but on the competition of balances, or stakes. In simple words, every holder of at least one stake, a minimally sufficient amount of crypto, can actively participate in creating blocks and thus also earn rewards under such network consensus model. This process came to be known as staking, and it can be loosely thought of as mining in the PoS environment.
With that established, let’s now see why, after so many years of what comes pretty close to oblivion, it has turned into such a big thing.

Why has staking become so popular, all of a sudden?

The renewed popularity of staking came with the explosive expansion of decentralized finance, or DeFi for short. Essentially, staking is one of the ways to tap into the booming DeFi market, allowing users to earn staking rewards on a class of digital assets that DeFi provides easy access to. Technically, it is more correct to speak of DeFi staking as a new development of an old concept that enjoys its second coming today, or new birth if you please. So what’s the point?
With old-school cryptocurrency staking, you would have to manually set up and run a validating node on a cryptocurrency network that uses a PoS consensus algo, having to keep in mind all the gory details of a specific protocol so as not to shoot yourself in the foot. This is where you should have already started to enjoy jitters if you were to take this avenu entirely on your own. Just think of it as having to run a Bitcoin mining rig for some pocket money. Put simply, DeFi staking frees you from all that hassle.
At this point, let’s recall what decentralized finance is and what it strives to achieve. In broad terms, DeFi aims at offering the same products and services available today in the traditional financial world, but in a trutless and decentralized way. From this perspective, DeFi staking reseblems conventional banking where people put their money in savings accounts to earn interest. Indeed, you could try to lend out your shekels all by yourself, with varying degrees of success, but banks make it far more convenient and secure.
The maturation of the DeFi space advanced the emergence of staking pools and Staking-as-a-Service (SaaS) providers that run nodes for PoS cryptocurrencies on your behalf, allowing you to stake your coins and receive staking rewards. In today’s world, interest rates on traditional savings accounts are ridiculous, while government spending, a handy euphemism for relentless money printing aka fiscal stimulus, is already translating into runaway inflation. Against this backdrop, it is easy to see why staking has been on the rise.

Okay, what are my investment options?

Now that we have gone through the basics of the state-of-the-art cryptocurrency staking, you may ask what are the options actually available for a common crypto enthusiast to earn from it? Many high-caliber exchanges like Binance or Bitfinex as well as online wallets such as Coinbase offer staking of PoS coins. In most cases, you don’t even need to do anything aside from simply holding your coins there to start receiving rewards as long as you are eligible and meet the requirements. This is called exchange staking.
Further, there are platforms that specialize in staking digital assets. These are known as Staking-as-a-Service providers, while this form of staking is often referred to as soft staking. They enable even non-tech savvy customers to stake their PoS assets through a third party service, with all the technical stuff handled by the service provider. Most of these services are custodial, with the implication being that you no longer control your coins after you stake them. Figment Networks, MyContainer, Stake Capital are easily the most recognized among SaaS providers.
However, while exchange staking and soft staking have everything to do with finance, they have little to nothing to do with the decentralized part of it, which is, for the record, the primary value proposition of the entire DeFi ecosystem. The point is, you have to deposit the stakable coins into your wallet with these services. And how can it then be considered decentralized? Nah, because DeFi is all about going trustless, no third parties, and, in a narrow sense, no staking that entails the transfer of private keys. This form of staking is called non-custodial, and it is of particular interest from the DeFi point of view.
If you read our article about DeFi, you already know how it is possible, so we won’t dwell on this (if, on the off chance, you didn’t, it’s time to catch up). As DeFi continues to evolve, platforms that allow trustless staking with which you maintain full custody of your coins are set to emerge as well. The space is relatively new, with Staked being probably the first in the field. This type of staking allows you to remain in complete control of your funds, and it perfectly matches DeFi’s ethos, goals and ideals.
Still, our story wouldn’t be complete if we didn’t mention utility tokens where staking may serve a whole range of purposes other than supporting the token network or obtaining passive income. For example, with platforms that deploy blockchain oracles such as Nexus Mutual, a decentralized insurance platform, staking tokens is necessary for encouraging correct reporting on certain events or reaching a consensus on a specific claim. In the case of Nexus Mutual, its membership token NXM is used by the token holders, the so-called assessors, for validating insurance claims. If they fail to assess claims correctly, their stakes are burned.
Another example is Particl Marketplace, a decentralized eCommerce platform, which designed a standalone cryptocurrency dubbed PART. It can be used both as a cryptocurrency in its own right outside the marketplace and as a stakable utility token giving stakers voting rights facilitating the decentralized governance of the entire platform. Yet another example is the instant non-custodial cryptocurrency exchange service, ChangeNOW, that also recently came up with its stakable token, NOW Token, to be used as an internal currency and a means of earning passive income.

What’s next?

Nowadays, with most economies on pause or going downhill, staking has become a new avenue for generating passive income outside the traditional financial system. As DeFi continues to eat away at services previously being exclusively provided by conventional financial and banking sectors, we should expect more people to get involved in this activity along with more businesses dipping their toes into these uncharted waters.
Achieving network consensus, establishing decentralized governance, and earning passive income are only three use cases for cryptocurrency staking. No matter how important they are, and they certainly are, there are many other uses along different dimensions that staking can be quite helpful and instrumental for. Again, we are mostly in uncharted waters here, and we can’t reliably say what the future holds for us. On the other hand, we can go and invent it. This should count as next.
And remember if you need to exchange your coins StealthEX is here for you. We provide a selection of more than 250 coins and constantly updating the list so that our customers will find a suitable option. Our service does not require registration and allows you to remain anonymous. Why don’t you check it out? Just go to StealthEX and follow these easy steps:
✔ Choose the pair and the amount for your exchange. For example ETH to BTC.
✔ Press the “Start exchange” button.
✔ Provide the recipient address to which the coins will be transferred.
✔ Move your cryptocurrency for the exchange.
✔ Receive your coins!
The views and opinions expressed here are solely those of the author. Every investment and trading move involves risk. You should conduct your own research when making a decision.
Original article was posted on https://stealthex.io/blog/2020/09/08/cryptocurrency-staking-as-it-stands-today/
submitted by Stealthex_io to StealthEX [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

Hero Node — AMA

https://preview.redd.it/709g6p8g54011.jpg?width=1920&format=pjpg&auto=webp&s=5864cddf06cdfa93596983647faba08cf1e050c1
Hello everyone, we hosted the AMA (ask me anything) in our community yesterday. The co-founder Mason answered the questions of the group members one by one. Due to limited time, we only answered some typical questions. Please understand. After the event, we organized all the questions in the group into articles for you to review.
Of course, if your question is not in this article, please send an email to [[email protected]](/).
1.How long has the project been going on? And when can we expect the launch of the mainnet?
When we were in the form of the company Dianrong.com, we started the development and open source it on GitHub after 2yrs. In the end, we decided to raise money in an ICO form. The most crucial part of the project is building a network that support’s DApp’s, and that’s something we’ve already achieved. For more information regarding this, please visit the following article we wrote:
https://medium.com/@hero_node/hero-node-dashboard-is-officially-launched-taking-a-big-leap-in-dapp-development-8ccd28f60c64
Also, our own public chain will be published at the end of 2019!
2. When can we expect a detailed roadmap?
The roadmap in the whitepaper contains our complete roadmap, this will be added to the website soon!
3. Why do you have two Telegram groups?
Because of high interest, our first group reached the maximum amount of members, to give everyone a chance we decided to create a second group! But, we will try to see if we could emerge everything back into one group!
4. What is the nature of the partnership between Hero Node & Qtum?
We have a technical cooperation with public chain investors such as Qtum, ITC and BTM. Hero Node plans to support a number of public chains including Zilliqa. We believe that Hero Node can help them on expanding their markets /eco-system by integrating the public chain services, besides that we also require a variety of public chains to solve different challenges.
5. How can we verify your investment from Fenbushi and Qtum?
For Qtumm please go to: https://qtumeco.io/dapps and for Fenbushi, please check the images below:
https://preview.redd.it/9my79za954011.jpg?width=1080&format=pjpg&auto=webp&s=81f028ce542dcf9b0a0c36c6dec84502036475ce
6. Why didn’t Hero Node choose to support the price?
We just started and are really in the beginning stage of this amazing project, we don’t want to manipulate currency prices. We believe that with the development of the project the price will rise!
7. Do you have your own public chain?
As stated in the first question we will publish our own public chain at the end of 2019. For more information regarding our public chain please read the whitepaper. The project was divided into three phases:
Validation
Reward
Community
During the first two phases, we’ll be making use of the tokens based on ERC-20. When we enter the last phase the tokens will be generated by our own blockchain consensus algorithm.
8. I think the code on GitHub is not so crucial?
That’s because we only publish the code of the reward and consensus mechanism. We do have plans to publish the complete code after we’ve fully tested and verified everything.
9. Why can the refund be done only during specific times? and why is it mandatory that you can only refund if you haven’t traded the tokens?
We’ve chosen to open refunds at specific times to give our investors some time to think about the refund program. Regarding the second questions, we have implemented this policy to prevent investor using the refund for arbitrage which can have an impact on the market.
10. Who are Hero Node’s direct competitors? Why is Hero Node better than others, for example, EOS, FileCoin, IPFS?
Both Hero Node and EOS are trying to serve the Dapp development, but as you can see we’ve taken a completely different approach. Hero Node prefers to be completely decentralized, so it integrates some public chains rather than create an all-round chain. In frontend decentralization, Hero Node and IPFS are very similar, but we are not Dweb, but help developers to deliver the real Dapp. Also regarding the incentives part, we are not the same with FileCoin. If interested in that, I recommend everyone to read the posts I wrote on Medium about EOS and IPFS:
https://medium.com/@hero_node/solution-to-the-impossible-trinity-talking-from-the-trend-of-ipfs-web-player-56f28a0abcc6
https://medium.com/@hero_node/attention-eos-could-really-be-a-cancer-cell-9420d7ea8c16
11. How can I get in contact with your recruitment team?
Please send your resume to [[email protected]](/)
12. How many tokens do we need for running a node?
Running nodes won’t consume your tokens, but developers need to lock the tokens to get more resources, such as storage, bandwidth, etc.
13. Which kind of consensus mechanism is Hero Node based on? PoS or PoW?
It will be similar to PoW but different with Bitcoin, our public chain will use a creative algorithm which is different with PoW/PoS.
For a more in-depth description of our consensus, please read the article:
https://medium.com/@hero_node/talking-about-the-proof-of-existence-consensus-mechanism-9e90b7e8f4b7
15. What is the main focus of the team at the moment?
We are currently focusing on development & marketing!
16. Why are you listed on the Dapp page of Qtum? Are you their Dapp?
No, but we can help them with their ecosystem, their developers can use Hero Node to easily develop a Dapp based on Qtum chain.
17. Why do you have a refund policy?
Because we want to protect our investors.
18. How big is the team? And how many of them are developers?
Our team consists of 14 people, 8 of them are developers. We have many part-time developers and are still hiring.
19. A lot of people are wondering when will Hero Node be listed on the next exchange, could you please shed some light on the Binance rumors regarding certain transactions
There is this reliable ethscan service that informs about the listing of coins on exchanges, and more than often they are genuinely reliable. But we planned listing on exchanges within one month after ICO and of course there could be some top ones, but due to NDA we can’t say more about it until it’s finalized. Please keep an eye on our announcement channel, because that’s where we’ll be announcing it: https://t.me/HeroNodeChannel
20. Your advisory team seems more like finance people than blockchain experts, can you tell us more about the team?
At the moment, Hero Node has 3 advisors:
Kevin Guo is chairman of CBAC, which is the top organization of blockchain application in China
Richard Wang, the partner of DFJ, many experience on blockchain investment such as Vechain. Also, he has many resources in the area.
Jerry Liu, the professor from Stanford University.
21. Why is the contract of the crowd-sale, not open source?
Because of security reasons, we’ll be open sourcing the contract after the refund is finished. Also because there could be some bugs for the Ethereum and smart contract written by Solidity. Although we’ve tested the contract many times, for security reasons we will keep it closed until the refund is finished.
23. When will the code of the node be open source?
We will open source the code at the end of this year!
24. Compared to other cross-chain projects, what are the differences between Hero Node and others?
Please read the following article: https://medium.com/@hero_node/liu-guoping-founder-of-hero-node-talked-about-blockchains-cross-chain-506b2d3f90f084
25. In what stage of development is Hero Node now?
We’ve had some demo’s for DApps and have almost finished the integration parts of some public chains. If you’re interested you could take a look at our visualization map our node:
http://106.14.187.240/dashboard/geo
26. What do you think about the crypto market? Is it a bubble? And do you think that blockchain technology is overvalued?
We believe that blockchain is the future.
27. What did Hero Node do to help develop Dapp?
In short, we did the following:
Integration of public chains and distributed storage services.
Cross-platform dev framework called Hero Mobile.
The fully decentralized network and DApp eco-system
28、Do you have plan for integrating NEO?
We’re considering a cooperation with them.
29. Can you tell us something about the deployment of nodes?
At the moment we have ~10 nodes running all over the world, please check our visualization map:
http://106.14.187.240/dashboard/geo
30. With which projects have you established a partnership?
At the moment we have a partnership with Qtum, IoT, and much more is on the way! We plan to support a number of public chain including Zilliqa.
31. Where is Hero Node registered and where are you based?
Singapore, but currently a part of the team is working from China.
32. Is the command “npm install” available?
Yes, you can use the command to add ETH and IPFS service and welcome your contributions
33.How do you ensure that your team’s token are locked for 2 years, and will you be able to cash out in advance? Why not use smart contracts?
We will announce the team’s address.
34.Don’ t we need a minimum amount of Her to setup a node ?
No.
37. Why does the Hero Node team prefer to work with IPFS instead of Stroj for example?
Our developers have more than 2 years of experience working with IPFS, we also did compare IPFS with other distributed storage services and IPFS came out as the most mature one at this moment
38. What is the lock plan for pre-sale tokens?
Pre-sale tokens will be locked for 3 months including base and bonus. Every month 1/3 of the tokens will be unlocked.
39. Could you please tell us more about the partnership with Ziliqa?
We’ve met them several times and are currently testing on their testnet.
40. How come HeroMobile is not updated frequently?
HeroMobile is already a relatively mature project. But we’re definitely improving it.
41. How to run a node without having to stake any tokens?
Running a node is like running a Bitcoin or Ethereum node. It does not require tokens, but it needs to provide hardware resources such as CPU, storage, and bandwidth.
42. How can we run nodes and is there an incentive structure to do so?
Yes, we will have a mining mechanism similar to the mining algorithm of POW, refer to this article please:
https://medium.com/@hero_node/talking-about-the-proof-of-existence-consensus-mechanism-9e90b7e8f4b7
43. Will the official decentralized Dapp still be launched in June ?
Yes it will be at end of June.
44. When can we run nodes?
At the beginning stage, we will provide partners with nodes to run and test. According to the roadmap, we will push it to everyone in early 2019.
45. Are the main target users of Hero Dapp developers? What’s the plan for adoption after the official launch?
Not only developers, but also node providers, even ordinary users can use dapp developed based on HeroNode.
We will first improve the node, and improve the tools and SDK at the end of this year. The next step will be to conduct a lot of testing, and all developers are welcome to join in the test. After the entire system has matured, we will hold many hackathon activities to attract more developers. Of course, there will be many token incentives.
46. When will you guys start focusing on marketing?
We have already focused on marketing and are planning to do so even more. We welcome everyone to give us suggestions.
47. What is the next major milestone and when will that be reached?
Next milestone is the first Dapp releasing at end of June.
48. The hereditary idiots who wanted to refund or have refunded where will those HER tokens go? Will they be burnt or added to the ecosystem?
They will be reserved for partnerships.
49. Would you say you are in direct competition to EOS? If yes, how do differ? What is your edge for the adoption?
We have the same goal. We hope to solve the problem of developing Dapp, but EOS wants to obtain a balance in high tps, security and stability. Hero Node adopts the advantages of many public chains and pays more attention to ecological construction.
50. EOS is a cancer. I saw this post on Reddit. What does it mean?
EOS draws a lot of resources and it spreads like a cancer cell, affecting other ecologies. But in the end let’s see what it can give developers or if it is just a capitalist capital chase?
51. Dapp uses resources of Hero nodes that support both IPFS nodes and underlying blockchain nodes or are they the same?
Hero Node will integrate public chain resources and IPFS resources to form a complete ecosystem for developers to use
52. Will you recruit more developers ? While you compare to EOS, you know they have a very big team.
For sure, we will recruit more full-time and part-time workers. Development is our backbone.
53. Would you explain the difference between Hero Node and Filecoin model as they both consume resources by Dapps?
Filecoin is also an ecosystem of IPFS, but we are not just focusing on the storage part. We focus on the entire Dapp development cycle.
54. I appreciate the NDA clauses but as parting gift from this AMA — Can we get any juicy information that we can share with others and help bring the price up more.
At this stage we really could not share anything regarding our NDAs. Please be patient. There is lots of exciting news to come in the future.
55. Can someone please elaborate on the marketing efforts the team is doing?
  1. Recruiting more operators
  2. Some activities and development progress in China will also be synchronized to overseas media
  3. We are planning meetups in various countries.
56. What does “lock token” mean by developers?
This is a kind of behavior similar to the lease of resources. It can prevent resources from being abused, and it can positively cycle the entire ecosystem.
57. What’s the link on Medium of Hero? I want to read the articles about EOS and IPFS.
https://medium.com/@hero_node
58. Which gas limit i should use to make refund?
100,000
59. Already 3.5M tokens got refunded (technically out of circulation for now)?
Actually the number is 5.7M
60. Can you provide several examples on how someone will use your project and why your project is the best for this?
For example, when you place order an order on Amazon but use Paypal to fulfill the payment. These are two different companies with different processes. This is very difficult between the two public chains, at least for now it is difficult, Hero Node hopes to solve this problem by integrating the public chain and IPFS resources and creating a whole ecosystem. In the near future, you can use QTUM to place orders, but you will pay with ETH.
61. Seems to be the majority of people have no clue what they buy or why its unique I gotta be honest myself I don’t know the method behind coding for blockchain what do you use for coding and how do you test the code?
Our code structure is divided into Hero Aggregate Layer, Hero Node Gateway, Hero Mobile Protocol, Hero Kit and so on. We will have unit testing for each function in each structure. After each unit runs tests, we will perform process testing and carry out a large number of tests before delivering the software.
62. What you think about Morpheus labs? Are they your competitors?
Sorry, we don’t know much about them.
END 
In an open world, Hero Node welcomes any and all feedback. Especially helpful feedback will be rewarded!
Talk to us:
Medium: https://medium.com/@hero_node
Email: [[email protected]](/)
Twitter: https://twitter.com/hero_node
Reddit: https://www.reddit.com/HeroNodeOfficial/
Facebook: https://www.facebook.com/HeroNode.io/
submitted by HeroNode-official to HeroNodeOfficial [link] [comments]

Why Did Ripple (XRP) Surge? + New York AG Attacks Binance & Kraken - Today's Crypto News Sangstar1 Videos Presentations TruthResearchers - YouTube Bitcoin Halving Will be ‘Make or Break’ for Stock-to-Flow Model: PlanB  $30K BTC Price End of 2020 BITCOIN To REACH BETWEEN $12K And $0.5 MILLION BY WINTER’s END - FACT! NOT BUYING BTC NOW IS STUPID? JACK DORSEY Says BUY 0.2 BTC BY DECEMBER For 3 SHOCKING REASONS! Why He’s ALARMINGLY RIGHT This TIME DOES THE CYBERTRUCK Prove ELON MUSK OWNS BITCOIN? BTC Bears CRIED WHEN THEY SAW Groundbreaking FACT! NOVACHAIN  100% CREDIBLE - BINANCE API BOT LIVE DEMO Crypto World Evolution Review. Compliant Bitcoin Trading Software? He URGES BUY 0.1 BTC On DEC. 2nd? Why BITCOINERS Must HEAR What GENIUS ELON MUSK Is DOING With BTC!

These pieces of hardware built to mine Bitcoin can also be used to mine other cryptocurrencies such as Digibyte and Peercoin. In fact, they can mine any cryptocurrency that uses a SHA256 algorithm. There are different ASICs that have been designed for other algorithms too. For example, Litecoin and DOGE must be mined using specific ASIC mining ... Bitcoin Method Review: Can You Make $1,500 Per Day? Is it a SCAM? Click for LIVE Results of our Test. Trade over 40 cryptocurrencies and enjoy the lowest trading fees in America. Buying crypto like Bitcoin and Ether is as easy as verifying your identity, adding a payment and clicking "Buy". Sign up for our Wallet today. Create Wallet. Trade Crypto at the Exchange. Integrated with the Blockchain Wallet, our Exchange is a one-stop shop where you can deposit funds and place trades seamlessly in minutes. Get Started . Dive Deeper. Buy Crypto. Bitcoin $ USD. Your Email ... Satoshi Nakamoto is the name used by the unknown person or people who developed bitcoin, authored the bitcoin white paper, and created and deployed bitcoin's original reference implementation. As part of the implementation, they also devised the first blockchain database.In the process, they were the first to solve the double-spending problem for digital currency using a peer-to-peer network ... Only our second chance on Huobi's EOS_CW and Binance's EOSUSDT since 8th August 2019. Bitfinex and Binance's BTCUSD and BTCUSDT reached a seven day high on the 10th September 2019 at 19:38 showing an overall 71.2% decrease from the sixty day high of 274.08, making a spread of -195.09 over 25 days, the pairing is positioned at 45.16 as of 17th September from 04:38 looking at profit of 0 ... PoW Algorithm Change: ‘Doable’ or ‘Reckless’? A flurry of social media activity Monday accompanied confusion as to which parties from Bitcoin Core supported the concept, which would place mining back in the hands of small-scale individuals. Binance DEX does all of its matching on the blockchain, i.e. all nodes perform the matches and expect the same result. This is to ensure the maximum transparency and to mitigate the chance for front-running, even from the block producers. The matching infrastructure is expected to evolve and grow in capacity as time progresses. The decentralized exchange (dex) built on Ethereum, Uniswap has accumulated a whopping $2 billion in total value locked (TVL) this week. Tuesday’s data shows out of all the dece If bitcoin had a shorter block interval time, then there would be a higher number of forks. Proof of Stake. Proof of work has been developed since the 1990s. It’s the consensus algorithm used by bitcoin and many other major blockchains and cryptocurrencies. Proof of stake, however, is the second most common consensus algorithm. Proof of stake ...

[index] [16133] [12382] [1935] [9234] [7516] [5454] [20939] [11037] [3482] [9284]

Why Did Ripple (XRP) Surge? + New York AG Attacks Binance & Kraken - Today's Crypto News

Visit our website: https://altcoinbuzz.io In this video, Mattie talks about Ripple (XRP) and why the prices surged yesterday. He also talks about if Binance and Kraken have been unlawfully ... Subscribe to the TechCashHouse to learn everything you need to know about bitcoin, bitcoin news, cryptocurrencies, stocks, investing, and more! Manage your cash, and be informed. Let's grow ... At an event in 1985 my mother and I had a chance to meet three of the cast of my fav. show of all time "Star Trek" Walter Koenig, the late James Doohan, and George Takei. Here in Orlando. I remembe... Subscribe to the TechCashHouse to learn everything you need to know about bitcoin, bitcoin news, cryptocurrencies, stocks, investing, and more! Manage your cash, and be informed. Let's grow ... Binance US: Changpeng Zhao Hosting Airdrop & Price predicition discussion Binance Exchange 1,519 watching Live now How The Economic Machine Works by Ray Dalio - Duration: 31:00. Subscribe to the TechCashHouse to learn everything you need to know about bitcoin, bitcoin news, cryptocurrencies, stocks, investing, and more! Manage your cash, and be informed. Let's grow ... As to why this is the case, he remarked that with the potential of new buyers “absorbing profit-taking [by longs] and miner selling,” there’s a good chance $7,000 will be “accepted ... The majority of top traders on Binance Futures are longing Bitcoin ( BTC ), Ether ( ETH ), and 8 other cryptocurrencies. In fact, more than 50% of traders are long on 10 crypto assets despite the ... Subscribe to the TechCashHouse to learn everything you need to know about bitcoin, bitcoin news, cryptocurrencies, stocks, investing, and more! Manage your cash, and be informed. Let's grow ... After I spent all day cleaning and moving stuff, I was able to stay awake long enough to connect my crypto evolution trading bot with Binance and fund it with $1,000 of Bitcoin. Day 3: The voice ...

#